Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 969: 176459, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38438063

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal and insidious interstitial lung disease. So far, there are no effective drugs for preventing the disease process. Cellular senescence plays a critical role in the development of IPF, with the senescence and insufficient mitophagy of alveolar epithelial cells being implicated in its pathogenesis. Tetrandrine is a natural alkaloid which is now produced synthetically. It was known that the tetrandrine has anti-fibrotic effects, but the efficacy and mechanisms are still not well evaluated. Here, we reveal the roles of tetrandrine on AECs senescence and the antifibrotic effects by using a bleomycin challenged mouse model of pulmonary fibrosis and a bleomycin-stimulated mouse alveolar epithelial cell line (MLE-12). We performed the ß-galactosidase staining, immunohistochemistry and fluorescence to assess senescence in MLE-12 cells. The mitophagy levels were detected by co-localization of LC3 and COVIX. Our findings indicate that tetrandrine suppressed bleomycin-induced fibroblast activation and ultimately blocked the increase of collagen deposition in mouse model lung tissue. It has significantly inhibited the bleomycin-induced senescence and senescence-associated secretory phenotype (SASP) in alveolar epithelial cells (AECs). Mechanistically, tetrandrine suppressed the decrease of mitochondrial autophagy-related protein expression to rescue the bleomycin-stimulated impaired mitophagy in MLE-12 cells. We revealed that knockdown the putative kinase 1 (PINK1) gene by a short interfering RNA (siRNA) could abolish the ability of tetrandrine and reverse the MLE-12 cells senescence, which indicated the mitophagy of MLE-12 cells is PINK1 dependent. Our data suggest the tetrandrine could be a novel and effective drug candidate for lung fibrosis and senescence-related fibrotic diseases.


Assuntos
Células Epiteliais Alveolares , Benzilisoquinolinas , Fibrose Pulmonar Idiopática , Camundongos , Animais , Mitofagia , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Senescência Celular , Fibrose , Proteínas Quinases/metabolismo , Bleomicina/toxicidade , Ubiquitina-Proteína Ligases/metabolismo
2.
JCI Insight ; 8(21)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37937643

RESUMO

Chronic lung allograft dysfunction (CLAD) is a major complication after lung transplantation that results from a complex interplay of innate inflammatory and alloimmune factors, culminating in parenchymal and/or obliterative airway fibrosis. Excessive IL-17A signaling and chronic inflammation have been recognized as key factors in these pathological processes. Herein, we developed a model of repeated airway inflammation in mouse minor alloantigen-mismatched single-lung transplantation. Repeated intratracheal LPS instillations augmented pulmonary IL-17A expression. LPS also increased acute rejection, airway epithelial damage, and obliterative airway fibrosis, similar to human explanted lung allografts with antecedent episodes of airway infection. We then investigated the role of donor and recipient IL-17 receptor A (IL-17RA) in this context. Donor IL-17RA deficiency significantly attenuated acute rejection and CLAD features, whereas recipient IL-17RA deficiency only slightly reduced airway obliteration in LPS allografts. IL-17RA immunofluorescence positive staining was greater in human CLAD lungs compared with control human lung specimens, with localization to fibroblasts and myofibroblasts, which was also seen in mouse LPS allografts. Taken together, repeated airway inflammation after lung transplantation caused local airway epithelial damage, with persistent elevation of IL-17A and IL-17RA expression and particular involvement of IL-17RA on donor structural cells in development of fibrosis.


Assuntos
Fibrose Pulmonar , Infecções Respiratórias , Camundongos , Humanos , Animais , Interleucina-17/metabolismo , Receptores de Interleucina-17/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Fibrose Pulmonar/patologia , Pulmão/patologia , Inflamação/metabolismo , Fibrose , Infecções Respiratórias/metabolismo , Aloenxertos
3.
Int Immunopharmacol ; 117: 109985, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36893517

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal disease,characterized by an excessive accumulation of extracellular matrix (ECM) proteins in response to chronic lung injury. Current evidence suggests that metabolic reprogramming is always accompanied by myofibroblast activation in IPFof whichthe underlying mechanisms remain unclear. Ring finger protein 130 (RNF130), was demonstrated involved in multiple diseases. However, whether RNF130 plays a critical role in the pathogenesis of IPF needs to be clarified. METHODS: We first investigated the expression of RNF130 in pulmonary fibrosis in vivo and in vitro. We then observed the effect and explored the molecular mechanism of RNF130 on the transition of fibroblast to myofibroblast and aerobic glycolysis. Further, we assessed the effects of adeno-associated virus (AAV)-induced RNF130 overexpression in the pulmonary fibrosis model, conducting pulmonary function, assessment of collagen depositionusing the hydroxyproline assay, and biochemical and histopathological analyses. RESULTS: We found that RNF130 was down-regulated in lung tissues of mice with bleomycin-induced pulmonary fibrosis and lung fibroblasts treated with transforming growth factor-ß1 (TGF-ß1). Then we demonstrated that RNF130 inhibitedthe transition of fibroblast to myofibroblast by suppressing aerobic glycolysis. Mechanistically, we revealed that RNF130 promotedc-myc ubiquitination and degradation, while c-myc overexpression reverses the inhibitory effects of RNF130. Importantly, pulmonary function, collagen deposition and fibroblast differentiation were significantly alleviated in adeno-associated virus serotype (AAV)6-RNF130 treated mice, which further validated the contribution of RNF130/c-myc signaling axis in pulmonary fibrosis pathological process. CONCLUSIONS: In summary, RNF130 participates in the pathogenesis of pulmonary fibrosis by inhibiting the transition of fibroblast to myofibroblast and aerobic glycolysis through promoting c-myc ubiquitination and degradation. Targeting RNF130-c-myc axismightrepresent a promising strategy to alleviate the progression of IPF.


Assuntos
Fibrose Pulmonar Idiopática , Proteínas Proto-Oncogênicas c-myc , Animais , Humanos , Camundongos , Bleomicina/efeitos adversos , Colágeno/metabolismo , Fibroblastos , Glicólise , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Ubiquitinação
4.
FASEB J ; 36(8): e22475, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35899478

RESUMO

Recent findings suggest that extracellular heat shock protein 90α (eHSP90α) promotes pulmonary fibrosis, but the underlying mechanisms are not well understood. Aging, especially cellular senescence, is a critical risk factor for idiopathic pulmonary fibrosis (IPF). Here, we aim to investigate the role of eHSP90α on cellular senescence in IPF. Our results found that eHSP90α was upregulated in bleomycin (BLM)-induced mice, which correlated with the expression of senescence markers. This increase in eHSP90α mediated fibroblast senescence and facilitated mitochondrial dysfunction. eHSP90α activated TGF-ß signaling through the phosphorylation of the SMAD complex. The SMAD complex binding to p53 and p21 promoters triggered their transcription. In vivo, the blockade of eHSP90α with 1G6-D7, a specific eHSP90α antibody, in old mice attenuated the BLM-induced lung fibrosis. Our findings elucidate a crucial mechanism underlying eHSP90α-induced cellular senescence, providing a framework for aging-related fibrosis interventions.


Assuntos
Bleomicina , Fibrose Pulmonar Idiopática , Animais , Bleomicina/toxicidade , Senescência Celular , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta/metabolismo
5.
FASEB J ; 36(6): e22359, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35621121

RESUMO

Asthma is a disease characterized by airway epithelial barrier destruction, chronic airway inflammation, and airway remodeling. Repeated damage to airway epithelial cells by allergens in the environment plays an important role in the pathophysiology of asthma. Ferroptosis is a novel form of regulated cell death mediated by lipid peroxidation in association with free iron-mediated Fenton reactions. In this study, we explored the contribution of ferroptosis to house dust mite (HDM)-induced asthma models. Our in vivo and in vitro models showed labile iron accumulation and enhanced lipid peroxidation with concomitant nonapoptotic cell death upon HDM exposure. Treatment with ferroptosis inhibitors deferoxamine (DFO) and ferrostatin-1 (Fer-1) illuminated the role of ferroptosis and related damage-associated molecular patterns in HDM-treated airway epithelial cells. Furthermore, DFO and Fer-1 reduced HDM-induced airway inflammation in model mice. Mechanistically, NCOA4-mediated ferritin-selective autophagy (ferritinophagy) was initiated during ferritin degradation in response to HDM exposure. Together, these data suggest that ferroptosis plays an important role in HDM-induced asthma and that ferroptosis may be a potential treatment target for HDM-induced asthma.


Assuntos
Asma , Ferroptose , Animais , Células Epiteliais/metabolismo , Ferritinas/metabolismo , Inflamação , Ferro/metabolismo , Camundongos , Pyroglyphidae
6.
Int Immunopharmacol ; 104: 108504, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35026657

RESUMO

Pulmonary fibrosis is a fatal lung disease for which no effective treatment is available. Previous studies have shown that the expression of programmed cell death-Ligand (PD-L1) is significantly increased in pulmonary fibrosis, and that this is related to the occurrence of this disease. However, the underlying mechanism is not clear. To clarify the efficacy and mechanism of an anti-PD-L1 monoclonal antibody (anti-PD-L1 mAb) as a treatment for pulmonary fibrosis, we conducted histopathological, molecular, and functional analyses in a mouse model of bleomycin-induced pulmonary fibrosis and a cell model of fibrosis induced by transforming growth factor-beta 1 (TGF-ß1). Our results indicate that PD-L1 is highly expressed in the lung fibrosis model. The anti-PD-L1 mAb significantly alleviated bleomycin-induced lung structural disorders and collagen deposition in mice and inhibited the proliferation, migration, activation and extracellular matrix deposition of TGF-ß1-induced lung fibroblasts. Interestingly, the anti-PD-L1 mAb could also alleviate the autophagy impairment observed in pulmonary fibrosis. The potential mechanism is through the downregulation of the PI3K/Akt/mTOR signaling pathway. Our study provides evidence of the crucial ability of anti-PD-L1 mAbs to activate autophagy in the context of pulmonary fibrosis, providing a new strategy for the treatment of this disease.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Fibrose Pulmonar/tratamento farmacológico , Animais , Anticorpos Monoclonais/farmacologia , Autofagia/efeitos dos fármacos , Antígeno B7-H1/metabolismo , Bleomicina , Células Cultivadas , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Transformador beta1
7.
Front Pharmacol ; 12: 739220, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880752

RESUMO

Idiopathic pulmonary fibrosis is a progressive fatal disease characterized by interstitial remodeling, with high lethality and a lack of effective medical therapies. Tetrandrine has been proposed to present anti-fibrotic effects, but the efficacy and mechanisms have not been systematically evaluated. We sought to study the potential therapeutic effects and mechanisms of tetrandrine against lung fibrosis. The anti-fibrotic effects of tetrandrine were evaluated in bleomycin-induced mouse models and TGF-ß1-stimulated murine lung fibroblasts. We performed Chromatin Immunoprecipitation (ChIP), Immunoprecipitation (IP), and mRFP-GFP-MAP1LC3B adenovirus construct to investigate the novel mechanisms of tetrandrine-induced autophagy. Tetrandrine decreased TGF-ß1-induced expression of α-smooth muscle actin, fibronectin, vimentin, and type 1 collagen and proliferation in fibroblasts. Tetrandrine restored TGF-ß1-induced impaired autophagy flux, accompanied by enhanced interaction of SQSTM1 and MAP1LC3-Ⅱ. ChIP studies revealed that tetrandrine induced autophagy via increasing binding of NRF2 and SQSTM1 promoter. Furthermore, tetrandrine inhibited TGF-ß1-induced phosphorylation of mTOR by reducing activation of Rheb. In vivo tetrandrine suppressed the bleomycin-induced expression of fibrotic markers and improved pulmonary function. Our data suggest that protective effect of tetrandrine against lung fibrosis might be through promoting Rheb-mTOR and NRF2-SQSTM1 mediated autophagy. Tetrandrine may thus be potentially employed as a novel therapeutic medicine against IPF.

8.
Front Pharmacol ; 12: 744826, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603058

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal disease in which the normal alveolar network is gradually replaced by fibrotic scars. Current evidence suggests that metabolic alterations correlate with myofibroblast activation in IPF. Anlotinib has been proposed to have antifibrotic effects, but the efficacy and mechanisms of anlotinib against lung fibrosis have not been systematically evaluated. The antifibrotic effects of anlotinib were evaluated in bleomycin-induced mouse models and transforming growth factor-beta 1 (TGF-ß1)-stimulated lung fibroblasts. We measured lactate levels, 2-NBDG glucose uptake and the extracellular acidification rate (ECAR) to assess glycolysis in fibroblasts. RNA-protein coimmunoprecipitation (RIP) and polysome analyses were performed to investigate novel mechanisms of glycolytic reprogramming in pulmonary fibrosis. We found that anlotinib diminished myofibroblast activation and inhibited the augmentation of glycolysis. Moreover, we show that PCBP3 posttranscriptionally increases PFKFB3 expression by promoting its translation during myofibroblast activation, thus promoting glycolysis in myofibroblasts. Regarding mechanism, anlotinib exerts potent antifibrotic effects by downregulating PCBP3, reducing PFKFB3 translation and inhibiting glycolysis in myofibroblasts. Furthermore, we observed that anlotinib had preventative and therapeutic antifibrotic effects on bleomycin-induced pulmonary fibrosis. Therefore, we identify PCBP3 as a protein involved in the regulation of glycolysis reprogramming and lung fibrogenesis and propose it as a therapeutic target for pulmonary fibrosis. Our data suggest that anlotinib has antifibrotic effects on the lungs, and we provide a novel mechanism for this effect. Anlotinib may constitute a novel and potent candidate for the treatment of pulmonary fibrosis.

9.
Front Pharmacol ; 12: 708462, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497513

RESUMO

Pulmonary fibrosis is characterized by alveolar epithelial cell injury, lung fibroblast proliferation, differentiation, and extracellular matrix (ECM) deposition. Our previous study indicated that extracellular HSP90α (eHSP90α) promotes pulmonary fibrosis by activating the MAPK signaling pathway. Thus, treatment with 1G6-D7 (a selective HSP90α monoclonal antibody) to antagonize eHSP90α could effectively ameliorate fibrosis. This study aimed to elucidate the mechanism underlying the effects of eHSP90α in pulmonary fibrosis by focusing on its link with endoplasmic reticulum (ER) stress. Our results showed that eHSP90α promoted lung fibroblast differentiation by activating ER stress. Treatment with the ER stress inhibitor tauroursodeoxycholate (TUDCA) or glucose-regulated protein 78 kDa (GRP78) depletion significantly abrogated the effect of eHSP90α on ER stress and fibroblast activation. In addition, eHSP90α induced ER stress in fibroblasts via the phosphoinositide-4,5-bisphosphate 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway, which could be blocked by the PI3K/AKT inhibitor LY294002, and blockade of eHSP90α by 1G6-D7 markedly inhibited ER stress in the model, indicating preventive and therapeutic applications. Intriguingly, we observed that TUDCA effectively reduced the secretion of eHSP90α in vitro and in vivo. In conclusion, this study shows that the interaction between eHSP90α and ER stress plays a crucial role in pulmonary fibrosis, indicating a positive feedback in lung fibroblasts. Targeting eHSP90α and alleviating fibroblast ER stress may be promising therapeutic approaches for pulmonary fibrosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...